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On Hotelling's Approach to Testing for a
Nonlinear Parameter in Regression

by

Mark Knowles
Alza Corporation

and
David Siegmund

Stanford University

.. 'Abstract.

'The method suggested by Hotelling (1939) to test for a nonlinear parameter in a regression

model is reviewed. Using the method of Weyl (1939), we derive a simple expression for the

volume of 4 tube about a two dimensional manifold with boundary embedded in the unit

sphere in Vf'. Applications to testing for a single harmonic of undetermined frequency and

phase and to testing for a change-point in linear regression are discussed.
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1. Introduction.

Hotelling (1939) and Weyl (1939) initiated a profound line of geometric research (e.g.

Griffiths, 1978, Langevin and Shifrin, 1982, Gray, 1982), motivated by the following statistical

question. Suppose yi -/3fi(8)+ei (i = 1,2,... , n), where the fi are known functions depending

on an unknown, perhaps multidimensional parameter 0, and the e, are independent N(O, a 2)e

errors. What is the significance level of the likelihood ratio test of H0 : # = 0? (One can

also consider the more general model yi = (a, xi) + Pfi(8) + ei, where a is a p-dimensional

parameter and the xi are known p-dimensional vectors, as we show in Section 4.)

One of Hotelling's principal motivating examples is fj(8) = cos(psti + w), where the ti are

known constants and 0 = (p,w). Another example is the broken line regression f,(G) =

(ti - 0)+. Davies (1987) gives an interesting discussion of each of these problems from a

different viewpoint.

It is easy to see that the likelihood ratio statistic for testing H0  = is equivalent to

max { [Ff1(O)Yi]2/[Ef2(O)Y?]"

Setting f(0) = (fi(0),. .. , f(0)) and y = (Y,..., Y,), we can write this statistic in the form

max I (f(0), y)2 /[lf(O)1 2 IIY112 ] .

In terms of the unit vectors -y(O) = f(O)/lf(O)I and U = y/Ilyll, the rejection region is of the

form

max(y(o), U)2 > W2.

The rejection region can be described geometrically as the union of two tubes in the unit sphere

S' - 1, one about -y(O) and one about -- y(O), of geodesic radius cos-l(w). Here the tube about

y(O) of geodesic radius V is the set of all u E S'-1 within geodesic distance P of the manifold

-y(0) as 0 ranges over some parameter space. Under H0 U is distributed uniformly on S. - 1

and hence the significance level of the likelihood ratio test is the normalized surface area on
Sn'- of the union of the two tubes. i

The purpose of this paper is to review the Hotelling-Weyl approach and explore its

statistical implications by a detailed discussion of the two concrete examples mentioned above.

Additional applications are described by Naiman (1986a,b), Knowles (1986), and Johansen

and Johnstone (1988).

The theoretical basis for our discussion of the broken line regression, which involves a one

dimensional parameter 9, is given by Naiman (1986) and Johnstone and Siegmund (1987). The
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theoretical situation for multidimensional 0 is less satisfactory. Since Weyl's theorem concerns

manifolds without boundary whereas many statistical problems and Hotelling's example in

particular involve manifolds with boundary, we begin by giving a version of Weyl's theorem for

two dimensional manifolds (surfaces) with boundary embedded in S -1 . The two dimensional

case is especially interesting because a term which would be onerous to evaluate numerically

can be combined with other terms and evaluated analytically by an application of the Gauss-

Bonnet Theorem. Naiman (1987) discusses a special class of d-dimensional manifolds with

boundary, but even in the case d = 2 his result is somewhat differently formulated.

Our numerical studies have two purposes. (i) Since the Hotelling-Weyl theory is exact

only for tubes of small radii, i.e. for small significance levels, we indicate through these concrete

examples the accuracy provided by the theoretical results at conventional significance levels.

(ii) Since the theoretical results contain coefficients depending on the sample size and dimension

of the parameter space, which can be difficult to compute, we investigate numerically the effect

of approximating or neglecting some of these coefficients.

The paper is organized as follows. Section 2 contains our version of Weyl's theorem for

surfaces with boundary. Once the theorem is formulated the proof is not difficult for the

careful reader of Weyl's paper. Nevertheless, we give the argument in some detail because

the restriction to surfaces makes possible a completely elementary (in the sense of differential

geometry) exposition, which we hope will make the subject more widely known by statisticians. N
Section 3 specializes our general theorem to the problem of testing for a periodic term and A

compares some numerical results with the outcomes of a simulation experiment. Section 4

discusses the problem of testing for a break in a regression line. For the most part Sections 3

and 4 can be read independently of Section 2. In Section 5 we try to draw some qualitative

conclusions and discuss possible extensions of our results.

2. The Volume of Tubes about Surfaces with Boundary. *,

Suitable references for the following developments are Millman and Parker (1977) and Do

Carmo (1976). The former is notationally consistent with Weyl (1939) and with modern usage,

and consequently that notation is used here. The latter gives a more thorough and often more

adequate treatment of the concepts needed below.

As in Hotelling (1939) and Weyl (1939) we consider first the technically simpler case of

surfaces M in 1DO" and then indicate the modifications required for surfaces in the unit sphere

Sn-1 C 1R.

We assume that a regular, oriented surface Af C 1" is given locally by a C 3 function

"5,2
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z = z(u 1, u2 ) defined on an open set in JR 2 . Assume also that the boundary of M, say 4M,

is given by a piecewise regular, positively oriented curve y, parameterized by arc length. (The

reader who wishes to avoid the technical concept of orientation may consider the special case

in which M is given globally by X(u', u2 ) .)

The tube about M of radius a is the set of all points whose minimum distance to M is

less than a. We say that overlap occurs at a point y in the tube if there exists more than one

point in the manifold which is closest to y.

Let IMI and IOMI denote the surface area of M and length of OM respectively. Let fln

denote the volume of the unit ball in JR and wn the volume (surface area) of the unit sphere
Sn cIR" +1 (sin = Ir"/ 2/F(n/2 + 1),wnI - 2rn/ 2/r(n/2); our w,- 1 is Weyl's Wn).

Theorem 1. Assume that the exterior angles at the vertices (if any) of aM are positive in

the sense that the tangent to y rotates through a positive angle at each vertex. For all a

sufficiently small that no overlap occurs in the tube of radius a about M, the volume V(a) of

the tube is given by

V(a) = IMfln_2a"- 2 + 2-1jOMjftna "-' (1)

+ 2rX(M)fQ._ 2an/n,

where X(M) is the Euler-Poincar6 characteristic of M .

Remarks. (i) the factor 27rx(M) in (1) arises indirectly as

IM KdA + I k~ds + EO,, (2)

where K is the Gaussian curvature and dA the element of surface area of M , k. is the geodesic

curvature and ds the element of arc length of OiM, and the 6, are the angles of rotation of the

tangent to -y(s) at the vertices of OM. That (2) equals 2irx(M ) is the Gauss-Bonnet Theorem

(Do Carmo, 1976, p. 274). Since numerical evaluation of the individual terms in (2) would be

onerous whereas X(M) is easily determined and in statistical problems is often zero or one, this

simplification of (2) is quite fortunate. That the various ingredients of (2) are involved in V(a)

is not surprising. That they all have the same coefficient and hence can be combined appears

in our proof as an accident of calculation for which we do not have a satisfactory geometric

explanation.

(ii) The condition that no overlap occurs is both a local and a global condition. The tube over-

laps itself locally whenever one of the Jacobian matrices appearing in the following argument

3
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has a vanishing determinant. In that case the curvature of the surface is so great that the

mapping which parameterizes points in the tube is not locally one-to-one. The occurrence of

global overlap is not so easily characterized. If no local overlap occurs, the right hand side of

(1) is an upper bound for the left hand side. Johansen and Johnstone (1988) give an algorithm

to determine the smallest radius at which overlap occurs in a tube about a curve.

(iii) If some of the exterior angles at vertices of aM are negative and no self overlap occurs

except the localself overlap at those vertices, V(a) is < the right hand side of (1).

Proof. We give the proof for n = 4, which simplifies the necessary computations and except

for one technical identity given at the end of the proof has all the ingredients of the general
case. The method involves evaluation of the differential of volume at a point y in the tube,

say dV(y), followed by integration over the tube. We consider separately the case of points y

which are nearest an interior point of M and points nearest to a boundary point. Initially we

follow Weyl closely.

For points y nearest to an interior point x = x(uI , u2) we have y = x + 1n(1) + 2n(2),
where n(1) and n(2) are mutually orthogonal unit normals to the tangent space to M at

x(u', u2 ). Then y = y(ul, u 2 ,,, 2 ) and

dV(y) = IY1, Y2 , Y3, y 41dudu2d d 2 , (3)

where yi denotes the partial derivative of y with respect to the ith argument, and the double

bars denote the absolute value of the determinant of the Jacobian matrix of the enclosed

(column) vectors. We have

Y = xi+ ni(1) + 2nj(2) (i = 1,2), (4)

Y3 = =

where xi = ax/ou i and ni(v) = an(v)/0u'. We can express n,(v) as a linear combination of

X1 , z 2 , n(1), and n(2) by (Weingarten equations)

n1(v) = - )I + (5)

where -L,(v) is for our purposes defined to be the coefficient of xj in the indicated expansion. 7.%

and + ... indicates components orthogonal to the tangent space spanned by x, and x2. Hence

writingL = L(( L (v)

L(v) = (
L2(v) L2(V)

~1 2



we have in matrix form by (4) and (5)

(Y1,Y2) = (Xl,X2)(I - IL(1) - C2L(2)) +

so (3) becomes

dV(y) = I(xI, x 2 )(I - f 1L(1) - 2L(2)), n(1), n(2)jdudu2dfidC2  (6)

= JIXI, z2, n(1), n(2)1 III - C1L(1) - C2 L(2)IIdu'du2 id .

From the determinantal identity

IvI,.. .,Vk 2 = I(V,, v,)l,

we see that the first factor on the right hand side of (6) equals g/2, where (gij) = ((xi, x,))

is the matrix of the first fundamental form of M and g = Ig1jl. Since dA = g'/ 2du'du2 is the

element of surface area on M, we see from (6) that the volume associated with points y closest

to interior points of M is

Vi(a) = IM fj+<2<a2 C - ,L(1) - C2 L(2)ld~jdC2dA. (7)

Expansion of the determinant in (7) yields

1- fitr L(1) - C2tr L(2) + CIL(a)I + 2IL(2)I
+ & j2 {L1(1)L2(2) + L1(2)L2(1) - 2L'(1)L1(2)},

so

V, (a) = Jj(1± + C2L(1)f + .f. IL(2))dfid< 2dA
1 2<

= 7ra 2 IMl + / (IL(1)1 + IL(2)l) 2 <1 d&2 A

= ira 2 lAl + 4-11ra4 IM (IL(1)I + IL(2)I)dA.

To identify IL(1)1 + IL(2)1 as the Gaussian curvature K, we put xj = Ox/au'iu j and in the

customary way (e.g. Do Carmo, 1976, p. 232) define Christoffel symbols Ft, and coefficients

Lij(v) by

.ij = Ekr,,Xk + E,,L,(v)n(v).

Since (xi, n(v)) = 0, Lij(v) = (xi,, n(v)) = -(xi, nj(v)), and hence by (5) Lij(v) = Ekg,kL ().

One can now proceed line by line as in standard proofs of Gauss's Theorema Egregium (e.g.

Do Carmo, 1976, pp. 233-34; Millman and Parker, 1977, pp. 142-43) to show that the

intrinsic evaluation of K in terms of the Christoffel symbols and their partial derivatives

5d
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equals IL(1)I + IL(2)I. Hence

VI(a) = -ra21 jM + 4-17ra 4  KdA. (8)
JM

Now assume that the closest point in M U OM to y is a point -Y(s) E aM where i(s) =

d7 /ds exists. Then

y = -y + 77n(o) + jn(l) + bn(2), (9)
where n(O) is a unit vector in the tangent plane of M, but orthogonal to Y and as before n(1) V

and n(2) are orthogonal to the tangent plane. We choose n(O) to point towards the interior of

the manifold (rotated by +7r/2 from i), so the geodesic curvature k. = k9 (s) = (Yn(0)), and

7 E (-a,0].

The volume element is

dV(y) = IIYi, Y2 , Y3 , y4IIdsd7dfid 2 ,

where as before y, is the partial derivative of y = y(S, 77, i, ) with respect to the ith argument.

Putting q dq/ds, we have the Frenet-Serret equations (cf. Do Carmo, 1976, p. 261)

- = kan(O) + kin(i) + k2 n(2)

n(0) = -k 9 i + rin(1) + r2n(2)

in(1) = -kii - 71n(O) + r3n(2)

n(2) = -k2" - r 2 n(O) - T3n(1), •

where except for k. the values of the coefficients ultimately will not concern us. Hence by (9)

dV = Ii" + tjh(0) + ,h(1) + 2h(2), n(0), n(1), n(2)Ildsd?7djd2

= IIt(1 - ?1kg - jkj - bk 2 ), n(0), n(1), n(2)jdsd7 df id 2.•

The volume associated with these points y is

V La) (1 - 7?kg - kjj- k2b 2)d<jd 2d?ds NM 7 2 + 4 2 + 4 2 < 2 d . ' ,

= 7r(a 2 - 772)(1 - kg2?)drids (10)
M -a

= 2rlOMlaa/3 + 4-ira4  k 9ds.
fa m

The contribution to V(a) from points in the tube which are closest to vertices of OMI is

clearly
V3() Q4 a 4 VO /2- 4- 1 ra 4 2,, (11) ?.

6 0'
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where the O's are the angles of rotation of the tangent to y at the vertices. b

Addition of (8), (10), and (11) and an appeal to the Gauss-Bonnet Theorem as indicated

in Remark (i) following the statement of the theorem complete the proof in the special case

n =4.

The proof for general n is essentially the same. The coefficients of fM KdA, f8A kgds, .5

and Eii are respectively

anJC.f .. .. j-n77idi . G
+..07 <_ 2 +42 +.+4 _ -:5

and (21r)-lanSI, which some calculus shows are all equal to n-la'nln_ 2 . U

To prepare for the spherical case suppose y = y(ul,..., un-1) is a coordinate patch of a

hypersurface in1R'. Let p = (y, y) and z = YIP E Sn-1. Assume z is one-to-one.

Lemma 1 (Weyl): The volume element at z E Sn - is given by

dV(z) = 1Y, Yj,-.-, Yn-i jdul ... du-1/,"

where y, = Oy/Oui.  INN

Proof. Since z is the unit normal to the hypersurface z(u un- )

dV(z) = IIz, zi, .... -, z_ 1 jdul ... du'-  ., "

where zi = O9z/Ou'. Since
zi = P-1 Yi + yOf"/aui,

by collinearity we have Iz, z, ... , zIn-I = 1Y, Y1, . Yn- IIP" .

Now suppose M C Sn - , the unit sphere inIf?. The tube about Al of geodesic radius O

is defined as the set of all z E Sn- 1 such that (z, x) > cos w for some x E M.

Theorem 2. Assume that M C Sn-' and the exterior angles at the vertices of 8M are

positive. For all V sufficiently small that no overlap occurs in S' - ' in the tube of geodesic

radius V about M, the volume V(,,) of the tube is given by

V(p)= (n - 3)-wn4 [IMI cos p(sin )f,-3

+21rX(AJ) j (sinw),-2dw] + [2(n - 2)]-aw,_zja1l(sin :)"-2,

7A



where X(M) is the Euler-Poincar6 characteristic of M.

Proof. Suppose z is a point in the tube closest to an interior point x of M. Put k =n - 3

and

1(13

where x = X(U', U2) E M and the n(v) E S'-' are mutually orthogonal unit normals to the

tangent space of Ml at x(u', u 2) Then we have the representation

where

By LPT ima l and (13)

du'dU2 dfi ... .
dV(z) 11,YYnl, ,nkJ 1+ + _.+ )n2'

The proof of Theorem 1 together with some calculation shows that the contribution to the

volume of the tube from these points is

k p

=1 + ±F. IL(v)) d~ . G dA
Vi ~ ~ (1 mf a2 + + . + 2)n/2

=2 Lw 4 HAIl /Cos w(sinwY d4dw (14)

+ 1(n - 3)-1 j(K - 1 )dA j(SinW)2 d.,

=(n - 3) 1'Wn4I[1111cos (sin n-3 + JKdA (sin )--2 d-].

The reason for the appearance of K - 1 in an intermediate equality of (14) is that (13) involves

k =n - 3 of the n - 2 normals (in ll n) to the tangent space of Mf. The last normal is z, the

normal toS'itself. Its contribution to the (intrinsic) Gaussian curvature of Af equals, tile

Gaussian curvature of S'' which is one. Hence from the n -3 normals represented in (13)I

we obtain A' - 1.

For points z closest to a point of OMf where -Y(s) exists. we have

where n(O) is orthogonal to ~Ybut in the tangent space of Al (pointing into M!) and ?I(1.

JP% % %
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dVd..

Im k()are as before. Also 0 0 and 9 + + . .. + <tan2  . By Lemma 1

+ q vn(0) + cni(i), n(0), n(1),..., n(k)ll dsd? d ... )k

Using the Frenet-Serret equations as in the proof of Theorem 1, we obtain

k ~dsd?7dfi ... dG

dV(z)= (- - ci) (17+2 + 2 +.. + 2)n/2

where k. = (Yn(O)) = -(Oin(O)) is the geodesic curvature of 1, and the exact valus of the

coefficients ci need not concern us. Hence the contribution to the volume of the tube arising

from these points is

L / dd ... dkds
V 2 () :50 k 7  2  + 2 )n/2  (15)

JaM _ (+2 <t,, V k

- [2(n - 2)]IWn- 3 1aMj(sin,;)"-2 + (n - 3)- w,_ 4 j kqds (sin )n-2-dw.
OM f.O P

Finally, the contribution arising from points nearest to a vertex of OM is

'3 (;) =(n - 3) -,_4(EO,) j(sinw) -d. "  (16)

Addition of (14). (15). and (16) and an appeal to the Gauss-Bonnet Theorem as in Remark

(i) following the statement of Theorem 1 complete the proof. I

Corollary 1. Under the conditions of Theorem 2, if U is uniformly distributed on S " - ,

P{ SUP (X(u, U2 ), 1) > w}j = 2-r(n/2)Mlw(1 - 0,)- 2

up U2 ) }3/2r[(n - 1)/2]

+(47t)- 1 10M1( - w2)(n - 2)/2 + ./2(A) (1 - r 2 )(n- 3 )/ 2d.

~.12F[n -1)/2])A

Proof. The corollary follows from the fact that the indicated probability is the normalized

volume of the tube of geodesic radius = cos - w. i.e.

V(cos - U')/- 1 •

Lai",



3. Testing for an Harmonic.

Assume yi = # cos(Mti + w) + E, (i = 1,2,. .,n), where the ti are known constants and

t1- F: are independent N(O,a 2). The parameters /3, p, w, and a2 are all unknown, and we wish

to test H0 /3 = 0 against Hi /3 5 0 . It is convenient to write

3 cos(pti + w) = 31 cos(Uti) + 32 sin(pti),

where /31 = /3cosw,32 = -13sinw, and consider the equivalent problem of testing H0 :/I =

/32 = 0. A calculation shows that the likelihood ratio test has a rejection region of the form

sup [(Y'(,), U)2 + (Y2 (1), U)2]1/ 2 > w, (17)
5Al <t <t 2

where -Y'(u) E Sn- , (7y1(),y 2 (p)) = 0 for all u, and U = y/Ilyll is uniformly distributed on
Sn-1 if Ho is true. In the special case that the ti are equally spaced, the natural range of Y is
( 0, ).

Johnstone and Siegmund (1987) exploit the one dimensional structure of (17) and obtain

by a non-geometric argument an upper bound for the signficance level of the likelihood ratio

test. We shall show as an application of Corollary 1 that their inequality is an equality when

the significance level is sufficiently small. We also show by a Monte Carlo experiment that
when the ti are equally spaced these analytic results provide very good approximations for the
true significance level over a broad range of values.

Note that

[(-YI(A), U)2 + (y 2 (p), U)2]/ 2 ] sup [(_y1 , U) cosw + (_2, U) sinw]
O<w<2wr

- sup [(-Ycos W sinwL,U)].
0<w<2ir

* Hence, if we put x(p,w) = -y(g)cosw + _2(A)sinw, Corollary 1 gives us the probability of

(17) in terms of

=P2 J j [ l 2 - K x O ) I 1/2

IM I = J0 all a d p 0 a d,,,

la l= j 1  a~Iw 0~, 2 w

and x(M).

Since I8xO/olw =- I for all u, IOMj = 41r. It is easy to see that x(31) = 0. For example.

one can cut the surface along w = 0 to obtain a new surface which clearly has Euler-Poincar6

10
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characteristic equal to one and a connected boundary with four 900 exterior angles. Comparison

of the Gauss-Bonnet Theorem applied to the cut and uncut surfaces shows that X(Af) = 0.

To obtain an expression for IM1, observe that x, Oz/O = -9 sin,,; + - 2 cosw and

X" = 9xl/9,o - I cosw+Y2 sinw, so 11IIl 1 and IIx,,I = IlirI cosw+'2 sinwll. Since ('yl,_12) =

0, ('1' t) = (r7,' 2 ) and hence (x,,x,) ( 2,2 )cos 2w- W 1,'*2 )sin 2 W = (" Y2 ).

Substitution of these results into the formula given in Corollary 1 yields

Corollary 2. If 1'(,u) e S" - (i = 1,2) are non-selfintersecting regular C 3 curves and
(7'(,u), 7(u)) = 0 for all p, _< P < 42, then for all w sufficiently close to 1,

pj Su p .[ r,(PU2+ ,2,x ,rU2]112 > 'I 2)(n-2)/2

Remark. Using quite different methods, Johnstone and Siegmund (1987) showed that the

right hand side of (18) is an upper bound for the left hand side for all 0 < uw < 1. In ,

the one dimensional case, i.e. for a tube about a curve, Johnstone and Siegmund provide two.-i

drvtosof upper bounds for the tube volumne which are shown to be equalities when no self " %

overlap occurs in the tube. However, their method does not seem to yield the equality in (18), :

and our geometric method does not appear to give their inequality for all 0 < u- < 1. In fact '

the problem of obtaining tight upper bounds for the volume of tubes of arbitrary radii about

manifolds of dimension > 2 appears to be a difficult problem. .

For a numerical example suppose that the tf are equally spaced, so by recentering we have
t) = i - m, where m = (n + 1)/2, i 1 ..., n. The model is then

+ (f ) + 3 os/A) + E, s)

w here y (Y1, . .Yn),e = (e . . . ), fl(/p) = (cos p(1 - m ), .... cosp(n - -, )), and f'(11) =

..

(sin( i m)...n sin(n - m)). It is readily verified that and) = pride = n/2 +

sin(np)/(2 sine), u.f2 H e = n/2 thsin(n)/(2sino), and hence the eui in (17) are given by
and or eIfI (i = 1,2). Also not, a 0 t r ie2). For al = 0,2 7 r the integral in t

(18) for our special case reduces to= - m, wher in = (n + 1)/, - 1,% "I.,n h oeste
VIC.

ye =o 11f'Oi +32()+, 5

where = (Y.. . ,Yn), = (e,. . ,e~), 1)=c(1 -i) cs~ n) n 2 p



Obtaining useful expressions for Ili 111 and IIj 2 11 requires a lengthier calculation. Some

details are given by Davies (1987), who (assuming a2 is known) discusses the likelihood ratio

test from a different viewpoint and is led to the same integral. Davies observes that II"r(s)II '.

n/(2 • 31/2) except for u close to 0 or r, which suggests use of ir2n/31/2 as an approximation

for (19). He subsequently modifies this suggestion to be more consistent with his numerical

calculations. Although the modified approximation seems excellent, in the numerical example

given below we have computed (19) numerically.

For various values of n and w, Table 1 gives the right hand side of (18) and the outcome

of a 10,000 repetition Monte Carlo experiment to estimate the probability on the left hand

side of (18). The analytic result seems to provide a very good approximation, although it is

less satisfactory for large n.

Table 1

The Probability (18)

n w Right Hand Side of (18) Monte Carlo Estimate

8 .90 .092 .091

8 .95 .018 .015
16 .75 .073 .073

16 .80 .022 .021

32 .55 .186 .181

32 .60 .058 .057

32 .65 .014 .014

64 .40 .355 .298

64 .45 .082 .069

64 .50 .014 .013

The term in Corollary 1 which involves the Euler-Poincar6 characteristic of Al is of smaller

order of magnitude than the others as w -* 1. For manifolds of dimension > 2 the analogous

terms do not in general simplify as they do in the two dimensional case, and they can be quite J

complicated to evaluate numerically. Hence it is interesting to consider the accuracy of the

approximation we obtain by simply ignoring those terms. b

Our second example is concerned with essentially the same manifold x(p,w) = 1(p) cos,,;

+ Y2(p)sinw as before, but now ; is restricted to the range 0 < w < 7r. The area of the new
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manifold is one-half that of the old. The length of its boundary is

27r + 2 j, l[ldg,

and its Euler-Poincar6 characteristic is one.

Table 2 gives a numerical example. The columns headed IMI, 10MI, and x(M) give the

values of the respective terms in Corollary 1. The final column gives the results of a 10,000

repetition Monte Carlo experiment.

Table 2

Effect of Neglecting the Gauss-Bonnet Term

n w IMI 18MI X(M) Total Monte Carlo

8 .86 .090 .025 .001 .116 .115

8 .94 .013 .002 .000 .015 .016

16 .72 .063 .015 .001 .079 .082

16 .78 .018 .004 .000 .021 .024

32 .54 .111 .028 .001 .140 .135

32 .58 .046 .010 .000 .057 .057

64 .40 .176 .043 .000 .219 .186

64 .45 .041 .009 .000 .049 .040

The analytic result seems to be about as accurate as in the preceding example. Neglecting

the term involving x(M) would have negligible effect, but neglecting the term involving IOMI

would make a substantial difference. Since both IMI and IOM I may be shown to be proportional

to n, one might have predicted these relations from analytic considerations. It is also interesting

that in this case our theoretical result is not known to be an upper bound; and in three rows

the Monte Carlo estimate actually exceeds slightly the theoretical value.

4. Testing for a Change-point in Linear Regression.

Assume yI = Oo + 01i + 0(ti - 0) + + E, (i = 1,...,n), where the ti E (0,1] are known

constants 00,/31, and 0 are unknown parameters, and the E, are independent N(0,a 2 ). The

problem of testing H0 = 0 = 0 has been discussed, for example, by Hinkley (1969, 1971),

Feder (1975), and Davies (1987). Presumably one-sided alternatives, say H, : 3 > 0. are

scientifically more relevant and we consider only this case. For our numerical examples we

take the ti to be equally spaced: ti = (i - 1)/(n - 1), i = 1 n..., n.

13



We begin with the special case o= 01 = 0, which fits directly into the framework of

Section 1 with fi(O) = (ti - 0)+ (i = 1,...,n). Since y(0) = f(O)/[f(O1 is only piecewise

smooth, Hotelling's (1939) results are not directly applicable. Naiman (1986) and Johnstone

and Siegmund (1987) obtain a suitable extension which gives an upper bound for the volume

of the tube of geodesic radius o about -f for all 0 < p < ir/2.

We consider a slight generalization of the likelihood ratio test, where we may restrict the

set over which we search for a possible change-point to a subinterval of [0, 1], say [0, 8o]. (See

James, James, and Siegmund, 1987, for the effect this modification has on the power of the

likelihood ratio test in a related problem.) The test statistic is maxOo< 0 (-y(0), U) and the

length of - is 1yJ = fo jri(O)jIdO. According to Naiman (1986) and Johnstone and Siegmund

(1987) for all 0 < w < 1

e maxo(O),U)>w } 1r[ )/2] (1 - X2)("-3)/2dx (20)

+(2~rY)-Iy(1 - w2)(n-2)/2

Assume now that ti = (i - 1)/(n - 1) (i = 1,.-n). Some calculation shows that

I[(6)11 = 0 for (n-2)/(n-1) < 0 < 1 and for v/(n-1) 0 < (v+)/(n- 1) (v = 0, . n-3)

12(n - 1)2 /a (o),

where A(O) = 02 + bVO + c,, b,, = -(n + v)l(n - 1), and c, = {2[(n _ 1)2 + 3(n - 1)V + v2)]+ .

3(n + v - 1) + 1}/[6(n- 1)2]. It is easily checked that A(O) > 0 for v < n - 3. so

(m(n-)oJ 
( -1 - )

2
- 1 /2 +1)/(_-I)

1II(O)ldO= 12(n - 1)F JI/(n10-) -
dO v=O /n1

where m = min(n - 3, [(n - 1)OoJ). Integration gives

I (n- 1)-' L(n-1)G°J II (e)Ild (21)
1 1 / 2(v +2- 1 -3/2(V - n ) ]f

= (: tan- -tan I.
E ~ t a - n - 1 - V 2 - } / ] - t n - (n - 1 - V )2  - 1 } 1/2

With the help of (21) one can evaluate the right hand side of (20) numerically. (Note that

the first term is just P{t,-1 > (n - 1)1/ 2 w/(1 - w2)1/ 2 }, where t denotes a random variable I.,.'

having Student's distribution with n degrees of freedom.) Some additional analysis shows that

as n - 00
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0 1()1dO -3' [log(1 - 8o)]/2, (22)

which may be used instead of (21) to evaluate approximately the right hand side of (20).

Table 3 compares the upper bound (20) with the results of a 10,000 repetition Monte

Carlo experiment. Both (21) and (22) are used to evaluate the right hand side of (20), and

both yield reasonably good approximations to the true probability.

Table 3

Change-point in Regression (30 = O = 0).

Theory (20)

n w 0o Exact(21) Approx. (22) Monte Carlo

5 .729 (n - 2)/(n - 1) .10 .111 .095

10 .637 (n - 2)/(n - 1) .05 .055 .049

20 .476 (n - 2)/(n - 1) .05 .055 .047

20 .452 .80 .05 .052 .043

50 .274 (n - 2)/(n- 1) .10 .108 .090

50 .240 .80 .10 .107 .094

50 .317 (n - 2)/(n - 1) .05 .054 .048

50 .286 .80 .05 .054 .047

We now drop the assumption /3o = Ol = 0. As indicated in a slightly simpler context

by Hotelling (1939)), one can reduce this case to the one considered previously as follows.

Writing our model in the form yi = 0o + Olti + Ofi(O) + Ei (i = 1. n) and introducing

the notation y = (Y,...,Y), t = (Il,...,tn), f(O) = (fU(0 )... ,fn(O), e = ( 61,.-.,, ), e =

(1,..., 1), = n-Eyi, f = n-1Eti, and f(0) = n-1Ffi(O), we let qj = yj - io - 3ti, where

= (t - fe, y)/Ilt - fell2 and o = f- -are the maximum likelihood estimators of 3 and

/3o under Ho = 0. It is readily verified that

i = 31(0 ) + i (i = 1,..., 01

where where (t -~i ref(9))

f,(0) = ,(0) - (o) -ii1 (, -n )

and
, _ (t - e,E) (

lit -iC112
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Also 5(O) = j(O)/If(e)jI defines a curve on the n - 3 dimensional sphere I

{(Ui,. .. ,U) : YEu1 = 1, u, = o,X(t, - f)u, = 0},

and under Ho = T = u is uniformly distributed on this sphere. It follows that

(f(0), yi) = ((), ) and (20) gives an upper bound for the significance level,

P max (O(), ) > w (23)
0 0<01

of the likelihood ratio test provided 1'yj is replaced by [jj, the length of the curve j, and n is .

replaced by (n - 2) to account for the degrees of freedom lost in estimating fo and f31.

It is now in principle straightforward to evaluate the arc length of j(0) and hence obtain

an upper bound for (23). There does not seem to be an exact expression as simple as (21);

and since (22) seemed to provide a reasonably good approximation in the previous case, we

use the analogous approximation here. After substantial calculation, one finds that as n - 00 F
I'i

01 ()ldO - (3' 2 /2)log [01 (1 - Oo)/Oo(l - 001.) (24)

Table 4 compares the analytic upper bound for (23) with the results of a 10,000 repetition .

Monte Carlo experiment. The analytic upper bound is given by (20) with n replaced by n - 2

and 1-yj replaced by [ 1. We have used the right hand side of (24) with 0o = 1/(n - I) and

= (n - 2)/(n - 1) as an approximation to ffl. For each value of n there is one Monte

Carlo experiment, so the entries for fixed n and different values of u, are dependent. The

results indicate that except for small n the theoretical approximation is reasonable, albeit

not excellent. Table 3 suggests that we could perhaps halve the error of the approximation by

computing !SI numerically.

'-S.
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Table 4

Change-point in Regression (0, 01 unknown)

n w Theory Monte Carlo

5 .963 .10 .059 .-

5 .989 .05 .018 P

10 .693 .10 .080

10 .763 .05 .038

10 .867 .01 .008

20 .495 .10 .085 0
20 .553 .05 .043

20 .656 .01 .010

50 .321 .10 .077

50 .359 .05 .041

100 .232 .10 .079

100 .259 .05 .041

5. Discussion.

In this section we consider briefly some possible extensions of Theorem 2. The most

obvious concerns tubes about higher dimensional manifolds (with boundary). Unfortunately

there does not seem to be any way in general to avoid some nasty looking computational

problems.

For example, suppose Al is a three dimensional submanifold of S - with a two dimen- P

sional boundary t9M. It is possible for aAf itself to have a (one-dimensional) boundary, but

for simplicity we assume it does not.

The method of proof of Theorems I and 2 shows that the contribution to the volume of

the tube of geodesic radius ; about AM coming from points in S1-1 which are closest to an

interior point of M is

(1: f dF, k d.
(2 .... +(2

[I, + +,+<t'[+ (J -3)] (1 + - +.+- )n/l P •

Here k = n - 4,d4 is the element of surface area on .41, and J is a curvature on A! defined as

follows. If (L'(v)) (v = 1 ... k + 1) are 3 x 3 matrices defined as in (5) relative to the normals

n(v), v= 1 .. , k, to .41 in the tangent space of S" - ' and the normal n(k + 1) to A! which is

27
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also normal to S - , then J is the sum over v = 1..., k + 1 of the sum of the three pairwise

products of the eigenvalues of (Lj(v)), i.e. the second symmetric function of (L,(v)).

The contribution to the tube volume from points closest to &M can be shown to equal

[1 - 2r7Ha(O) + '( - 1)] + I77 + ... k dk)
<0 + 771 + 2 +i+... /.a12) -<I

where dA 8 is the elemenet of surface area on 8M, Ka is the Gaussian curvature of 3M, and

Ha(O) is the part of the mean curvature of 9M associated with that normal n(O) to 3M which

lies in the tangent space of Al (and points into M).

Addition of V, and V2 and some calculation give an expression for the volume of the tube,

which involves

M aM dA 8, I dA + M a(O)dA&,

and f8 M KodAa. The last integral can be simplified by an application of the Gauss-Bonnet

Theorem. The others must be evaluated numerically in most cases. Numerical computation

of the third expression appears to be rather complicated in general, although in special cases

the integrands can be simplified analytically.

We are primarily interested in small probabilities, and it is easy to see that here as

in Theorems 1 and 2 the terms involving curvatures of M and aAf are of smaller order of r\.

magnitude as w - 1 than those involving the surface areas, IMI and 1OM1. Thus we might use

only these comparatively easily computed terms as an approximation. The second example in

Section 3 shows that such an approximation would be quite good in that case.

We record here the first two terms of the small tube probability for an rn dimensional

manifold with boundary embedded in S'" - . We assume M C S' is defined locally by

x = X(t), t E T C fRm , let 1MI and la111 denote the surface area of M and 9M, and let U be

uniformly distributed on S -l . Then as u, - 1
2-'F(n/2)AI r -1o

P{ max(x(t),U) > w} = (m+)/2F[(-n m 1)/2] - (1 U2)(nm1)/2 (25)
Tr)/2]

4-r (n/2)IO II m - 2(1 - w2)(n-m)/ 2 + 0((0 - w2)(n-+1)/2)

Complete development of these ideas is a project for future research. See Naiman (1987) .4

for a theoretical beginning in this direction and Johansen and Johnstone (1988) for a thought

provoking application.

Naiman (1986) and Johnstone and Siegmund (1987) show that Hotelling's formula giving

the exact volume of a tube of small radius about a non-closed curve actually provides an

P1 8



upper bound for the volume of a tube of arbitrary radius. (The result also applies to closed

curves provided they are given fictitious end points and regarded as not closed.) It would be

interesting to obtain good upper bounds for the volume of tubes of arbitrary radii about higher

dimensional manifolds. However, simple examples of surfaces in JR 3 show that the situation is

much more complicated than for curves. In particular, for a cylinder of unit radius and height

h the formula for the volume of tube of radius a < 1, to wit 4rah + 27r 2a 2 , does not give an

upper bound for the volume of a tube of radius a > 1 when h is large. On the other hand the

formula for the volume of a tube of radius a < 1 about S 2 C /l 3 , 8ra(1 + a 2 /3), provides an

upper bound for the volume for all a although for S1 C /?2 the closed curve must be given

fictitious endpoints in order to obtain an upper bound valid for tubes of large radii.
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